Semilinear elliptic equations and fixed points

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semilinear Elliptic Equations and Fixed Points

In this paper, we deal with a class of semilinear elliptic equation in a bounded domain Ω ⊂ R , N ≥ 3, with C boundary. Using a new fixed point result of the Krasnoselskii’s type for the sum of two operators, an existence principle of strong solutions is proved. We give two examples where the nonlinearity can be critical.

متن کامل

Singular Solutions for some Semilinear Elliptic Equations

We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...

متن کامل

Semilinear fractional elliptic equations involving measures

We study the existence of weak solutions to (E) (−∆)u+g(u) = ν in a bounded regular domain Ω in R (N ≥ 2) which vanish in R \Ω, where (−∆) denotes the fractional Laplacian with α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some extra hypotheses. When g satisfies a subcritical integrability condition, we prove the existence and uniqueness of a weak solution for pr...

متن کامل

Topological Derivatives for Semilinear Elliptic Equations

1.1. Topological derivatives in shape optimization. Topological derivatives are introduced for linear problems in (Sokolowski and Zochowski, 1999) and for variational inequalities in (Sokolowski and Zochowski, 2005). The mathematical theory of asymptotic analysis is applied in (Nazarov and Sokolowski, 2003; 2006) for the derivation of topological derivatives in shape optimization of elliptic bo...

متن کامل

Some Limiting Situations for Semilinear Elliptic Equations

— The objective of this mini-course is to take a look at a standard semilinear partial differential equation −∆u = λf(u) on which we show the use of some basic tools in the study of elliptic equation. We will mention the maximum principle, barrier method, blow-up analysis, regularity and boot-strap argument, stability, localization and quantification of singularities, Pohozaev identities, movin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2004

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-04-07718-4